Sunday, 30 April 2017

Bewegliches Mittel Arma Modell


Autoregressiver integrierter bewegter Durchschnitt - ARIMA DEFINITION des autoregressiven integrierten Bewegungsdurchschnitts - ARIMA Ein statistisches Analysemodell, das Zeitreihendaten verwendet, um zukünftige Trends vorherzusagen. Es ist eine Form der Regressionsanalyse, die künftige Bewegungen entlang des scheinbar zufälligen Weges der Bestände und des Finanzmarktes vorhersagen will, indem sie die Unterschiede zwischen den Werten in der Reihe untersucht, anstatt die tatsächlichen Datenwerte zu verwenden. Verzögerungen der differenzierten Serien werden als autoregressiv bezeichnet und Verzögerungen innerhalb prognostizierter Daten werden als gleitender Durchschnitt bezeichnet. BREAKING DOWN Autoregressiver Integrierter Moving Average - ARIMA Dieser Modelltyp wird allgemein als ARIMA (p, d, q) bezeichnet, wobei die Ganzzahlen auf den autoregressiven Bereich bezogen sind. Integrierten und gleitenden mittleren Teile des Datensatzes. ARIMA-Modellierung kann Trends, Saisonalität berücksichtigen. (P, q) Modelle für die Zeitreihenanalyse - Teil 2 In Teil 1 betrachteten wir das autoregressive Modell der Ordnung p, das auch als AR bezeichnet wird (P) - Modell. Wir führten es als eine Erweiterung des Zufallsmodells ein, um eine weitere serielle Korrelation in finanziellen Zeitreihen zu erläutern. Schließlich erkannten wir, dass es nicht genügend flexibel war, um alle Autokorrelationen in den Schlusskursen der Amazon Inc. (AMZN) und des SampP500 US Equity Index wirklich zu erfassen. Der Hauptgrund dafür ist, dass beide Vermögenswerte bedingt heteroskedastisch sind. Was bedeutet, dass sie nicht-stationär sind und Perioden variierender Varianz oder Volatilitäts-Clustering aufweisen, was von dem AR (p) - Modell nicht berücksichtigt wird. In künftigen Artikeln werden wir schließlich die Autoregressive Integrated Moving Average (ARIMA) Modelle sowie die bedingt heteroskedastischen Modelle der ARCH - und GARCH-Familien aufbauen. Diese Modelle werden uns unsere ersten realistischen Versuche zur Prognose von Vermögenspreisen bieten. In diesem Artikel werden wir jedoch die Moving Average der Ordnung q-Modell, bekannt als MA (q) einzuführen. Dies ist ein Teil des allgemeineren ARMA-Modells und als solches müssen wir es verstehen, bevor wir weitergehen. Ich empfehle Ihnen, lesen Sie die vorherigen Artikel in der Zeitreihe Analyse-Sammlung, wenn Sie dies nicht getan haben. Sie können alle hier gefunden werden. Moving Average (MA) Modelle der Ordnung q Ein Moving Average-Modell ähnelt einem autoregressiven Modell, mit der Ausnahme, dass es sich nicht um eine lineare Kombination von vergangenen Zeitreihenwerten handelt, sondern um eine lineare Kombination der vergangenen weißen Rauschterme. Intuitiv bedeutet dies, dass das MA-Modell solche zufälligen weißen Rauschschocks direkt bei jedem aktuellen Wert des Modells sieht. Dies steht im Gegensatz zu einem AR (p) - Modell, wo die weißen Rauschschocks nur indirekt gesehen werden. Über Regression auf frühere Ausdrücke der Reihe. Ein wesentlicher Unterschied besteht darin, dass das MA-Modell nur die letzten q-Schocks für ein bestimmtes MA (q) - Modell sehen wird, während das AR (p) - Modell alle vorherigen Schocks berücksichtigt, wenn auch in einer abnehmend schwachen Weise. Definition Mathematisch ist das MA (q) ein lineares Regressionsmodell und ist ähnlich strukturiert nach AR (p): Moving Average Modell der Ordnung q Ein Zeitreihenmodell ist ein gleitendes Durchschnittsmodell der Ordnung q. MA (q), wenn: Anfang xt wt beta1 w ldots betaq w end Wo ist weißes Rauschen mit E (wt) 0 und Varianz sigma2. Wenn wir den Backward Shift Operator betrachten. (Siehe vorhergehender Artikel), so können wir die obigen Funktionen als Funktion phi folgendermaßen umschreiben: begin xt (1 beta1 beta2 2 ldots betaq q) wt phiq () wt end Wir werden in späteren Artikeln die phi-Funktion nutzen. Eigenschaften der zweiten Ordnung Wie bei AR (p) ist der Mittelwert eines MA (q) - Verfahrens gleich Null. Dies ist leicht zu sehen, da der Mittelwert einfach eine Summe von Mitteln von weißen Rauschtermen ist, die alle selbst Null sind. Start Text enspace mux E (xt) Summe E (wi) 0 Ende Anfang Text enspace sigma2w (1 beta21 ldots beta2q) Ende Text enspace rhok links 1 Text enspace k 0 Summe Beta Beta Summe Beta2i Text enspace k 1, ldots, q 0 Text Enspace k gt q Ende rechts. Wo beta0 1. Wurden jetzt einige simulierte Daten generieren und verwenden, um correlograms zu erstellen. Dies wird die obige Formel für rhok etwas konkreter machen. Simulationen und Correlogramme Beginnen wir mit einem MA (1) - Prozess. Wenn wir beta1 0.6 setzen, erhalten wir das folgende Modell: Wie bei den AR (p) - Modellen im vorherigen Artikel können wir R verwenden, um eine solche Reihe zu simulieren und dann das Korrelogramm zu zeichnen. Da wir in der vorigen Zeitreihenanalyse eine Reihe von Übungen durchführen, werde ich den R-Code vollständig schreiben, anstatt ihn aufzuteilen: Die Ausgabe ist wie folgt: Wie wir oben in der Formel für rhok gesehen haben , Für k gt q sollten alle Autokorrelationen Null sein. Da q 1 ist, sollten wir einen signifikanten Peak bei k1 und dann danach signifikante Peaks sehen. Aufgrund der Stichprobenvorhersage sollten wir jedoch erwarten, dass 5 (marginal) signifikante Peaks auf einer Stichproben-Autokorrelationskurve zu sehen sind. Genau das zeigt uns das Korrelogramm. Wir haben einen signifikanten Peak bei k1 und dann unbedeutende Peaks für k gt 1, mit Ausnahme von k4, wo wir einen marginell signifikanten Peak haben. Tatsächlich ist dies eine nützliche Möglichkeit, zu sehen, ob ein MA (q) - Modell geeignet ist. Durch Betrachten des Korrelogramms einer bestimmten Reihe können wir sehen, wie viele sequenzielle Nicht-Null-Verzögerungen existieren. Wenn q solche Lags existieren, dann können wir legitimerweise versuchen, ein MA (q) - Modell an eine bestimmte Serie anzupassen. Da wir Beweise aus unseren simulierten Daten eines MA (1) - Prozesses haben, sollten wir nun versuchen, ein MA (1) - Modell an unsere simulierten Daten anzupassen. Leider gibt es keinen äquivalenten ma Befehl zum autoregressiven Modell ar Befehl in R. Stattdessen müssen wir den allgemeineren arima Befehl benutzen und die autoregressiven und integrierten Komponenten auf Null setzen. Dazu erstellen wir einen 3-Vektor und setzen die ersten beiden Komponenten (die autogressiven und integrierten Parameter) auf Null: Wir erhalten eine nützliche Ausgabe aus dem Befehl arima. Erstens können wir sehen, dass der Parameter als Hut 0.602 geschätzt wurde, der sehr nahe am wahren Wert von beta1 0,6 liegt. Zweitens sind die Standardfehler bereits für uns berechnet, so dass es einfach ist, Konfidenzintervalle zu berechnen. Drittens erhalten wir eine geschätzte Varianz, Log-Likelihood und Akaike Information Criterion (notwendig für Modellvergleich). Der Hauptunterschied zwischen arima und ar ist, dass arima einen Intercept-Term schätzt, da er den Mittelwert der Serie nicht subtrahiert. Daher müssen wir vorsichtig sein, wenn wir Vorhersagen mit dem Befehl arima durchführen. Nun wieder auf diesen Punkt später. Wie ein schneller Check wurden, um Konfidenzintervalle für Hut zu berechnen: Wir können sehen, dass die 95 Konfidenzintervall den wahren Parameterwert von beta1 0,6 enthält und so können wir beurteilen, das Modell eine gute Passform. Offensichtlich sollte das erwartet werden, da wir die Daten an erster Stelle simuliert haben. Wie ändern sich die Dinge, wenn wir das Vorzeichen von beta1 auf -0.6 ändern, können wir die gleiche Analyse durchführen: Die Ausgabe ist wie folgt: Wir können sehen, dass wir bei k1 einen signifikanten Wert haben Peak im Korrelogramm, mit der Ausnahme, dass es eine negative Korrelation zeigt, wie es ein MA (1) - Modell mit negativem ersten Koeffizienten erwartet. Wiederum sind alle Peaks jenseits von k1 unbedeutend. Ermöglicht ein MA (1) - Modell und schätzen den Parameter: Hut -0.730, was eine kleine Unterbewertung von beta1 -0.6 ist. Schließlich lässt sich das Konfidenzintervall berechnen: Wir können sehen, dass der wahre Parameterwert von beta1-0.6 innerhalb des 95-Konfidenzintervalls enthalten ist, was uns einen guten Modell-Fit zeigt. Lass uns das gleiche Verfahren für einen MA (3) Prozess durchlaufen. Diesmal sollten signifikante Peaks bei k in und unbedeutende Peaks für kgt 3 erwartet werden. Wir verwenden die folgenden Koeffizienten: beta1 0,6, beta2 0,4 und beta3 0,2. Wir können einen MA (3) Prozess von diesem Modell simulieren. Ive erhöhte die Anzahl der zufälligen Proben auf 1000 in dieser Simulation, was es leichter macht, die wahre Autokorrelationsstruktur zu sehen, und zwar auf Kosten der Herstellung der Originalreihe schwerer zu interpretieren: Die Ausgabe ist wie folgt: Wie erwartet sind die ersten drei Spitzen signifikant . Jedoch ist so das vierte. Aber wir können legitim vorschlagen, dass dies auf eine Stichprobe zurückzuführen ist, da wir erwarten, dass 5 der Peaks signifikant über kq hinausgehen. Nun kann ein MA (3) - Modell an die Daten angepasst werden, um die Parameter zu probieren und zu schätzen: Die Schätzwerte Hut 0,544, Hut 0,345 und Hut 0,228 liegen nahe bei den wahren Werten von beta10,6, beta20,4 bzw. beta30,3. Wir können auch Konfidenzintervalle mit den jeweiligen Standardfehlern erzeugen: In jedem Fall enthalten die 95 Konfidenzintervalle den wahren Parameterwert und wir können schließen, dass wir, wie zu erwarten, gut mit unserem MA (3) - Modell übereinstimmen. Finanzdaten In Teil 1 betrachteten wir Amazon Inc. (AMZN) und den SampP500 US Equity Index. Wir passten das AR (p) - Modell an beide an und fanden, dass das Modell nicht in der Lage war, die Komplexität der seriellen Korrelation effektiv zu erfassen, vor allem im Guss des SampP500, wo Langzeitgedächtniseffekte zu sein scheinen. Ich wont plot die Diagramme wieder für die Preise und Autokorrelation, statt Ill weisen Sie auf die vorherige Post. Amazon Inc. (AMZN) Beginnen wir mit dem Versuch, eine Auswahl von MA (q) - Modellen an AMZN, nämlich mit q in passen. Wie in Teil 1, verwenden Sie quantmod, um die täglichen Preise für AMZN herunterzuladen und sie dann in ein Protokoll umzuwandeln, um Strom von Schlusskursen zurückzugeben: Jetzt können wir den Befehl arima verwenden, um MA (1), MA zu passen (2) und MA (3) - Modellen und schätzen dann die Parameter von jedem. Für MA (1) haben wir: Wir können die Residuen der täglichen Logarithmen und des angepassten Modells darstellen: Beachten Sie, dass wir einige signifikante Peaks bei den Lags k2, k11, k16 und k18 haben, was anzeigt, dass das MA (1) - Modell ist Unwahrscheinlich, dass eine gute Passform für das Verhalten der AMZN-Log-Rückkehr, da dies nicht aussehen wie eine Verwirklichung von weißem Rauschen. Lets try ein MA (2) - Modell: Beide Schätzungen für die Beta-Koeffizienten sind negativ. Wir können die Residuen wieder zeichnen: Wir können sehen, dass es fast Null Autokorrelation in den ersten paar Verzögerungen. Allerdings haben wir fünf marginale signifikante Peaks bei den Verzögerungen k12, k16, k19, k25 und k27. Dies ist naheliegend, dass das MA (2) - Modell viel von der Autokorrelation erfasst, aber nicht alle Langzeitspeicher-Effekte. Wie sieht es mit einem MA (3) - Modell aus? Wiederum können die Residuen geplottet werden: Das MA (3) Residualplot sieht fast identisch mit dem MA (2) - Modell aus. Dies ist nicht verwunderlich, wie das Hinzufügen eines neuen Parameters zu einem Modell, scheinbar erklärt hat viel von den Korrelationen bei kürzeren Verzögerungen, aber das hat nicht viel Einfluss auf die längerfristigen Verzögerungen. Alle diese Beweise deuten darauf hin, dass ein MA (q) - Modell ist unwahrscheinlich, dass es nützlich sein, zu erklären, alle der seriellen Korrelation in Isolation. Zumindest für AMZN. SampP500 Wenn Sie sich erinnern, in Teil 1 sahen wir, dass die erste Reihenfolge differenzierte tägliche Log Rückkehr Struktur des SampP500 besaß viele signifikante Peaks bei verschiedenen Lags, sowohl kurz als auch lang. Dies zeigte sowohl die bedingte Heteroskedastizität (d. H. Die Volatilitäts-Clusterbildung) als auch die Langzeitspeicher-Effekte. Es führte zu dem Schluss, dass das AR (p) - Modell nicht ausreicht, um die gesamte vorhandene Autokorrelation zu erfassen. Wie wir oben gesehen haben, reicht das MA (q) - Modell nicht aus, um zusätzliche Serienkorrelationen in den Resten des eingebauten Modells auf die differenzierten täglichen Log-Preisreihen erster Ordnung zu erfassen. Wir werden nun versuchen, das MA (q) - Modell an den SampP500 anzupassen. Man könnte fragen, warum wir dies tun, wenn wir wissen, dass es unwahrscheinlich, dass eine gute Passform ist. Das ist eine gute Frage. Die Antwort ist, dass wir genau sehen müssen, wie es nicht eine gute Passform ist, denn dies ist der ultimative Prozess, dem wir folgen werden, wenn wir auf sehr viel anspruchsvollere Modelle stoßen, die möglicherweise schwerer zu interpretieren sind. Lets beginnen mit dem Erhalten der Daten und wandeln sie in eine erste Reihe differenzierte Reihe von logarithmisch umgewandelten täglichen Schlusskurse wie im vorherigen Artikel: Wir werden jetzt ein MA (1), MA (2) und MA (3) - Modell zu passen Die Serie, wie wir oben für AMZN. Beginnen wir mit MA (1): Machen wir eine Auftragung der Residuen dieses angepassten Modells: Der erste signifikante Peak tritt bei k2 auf, aber es gibt viel mehr bei k in. Dies ist eindeutig keine Verwirklichung von weißem Rauschen und deshalb müssen wir das MA (1) - Modell als eine für den SampP500 geeignete Potenz ablehnen. (2) Wiederum lassen sich die Residuen dieses angepassten MA (2) - Modells machen: Während der Peak bei k2 verschwunden ist (wie wir es erwarten), bleiben wir mit den signifikanten Peaks bei Viele längere Verzögerungen in den Resten. Noch einmal, finden wir das MA (2) - Modell ist nicht eine gute Passform. Für das MA (3) - Modell ist zu erwarten, dass bei k3 weniger serielle Korrelation als bei der MA (2) zu sehen ist, doch sollten wir auch hier keine Reduzierung weiterer Verzögerungen erwarten. Schließlich lässt sich eine Auftragung der Residuen dieses angepassten MA (3) - Modells machen: Genau das sehen wir im Korrelogramm der Residuen. Daher ist die MA (3), wie bei den anderen Modellen oben, nicht gut für den SampP500 geeignet. Die nächsten Schritte Weve untersuchte nun zwei große Zeitreihenmodelle im Detail, nämlich das autogressive Modell der Ordnung p, AR (p) und dann den Moving Average der Ordnung q, MA (q). Wir haben gesehen, dass sie beide in der Lage sind, einige der Autokorrelation in den Resten der ersten Ordnung differenzierte tägliche Log-Preise von Aktien und Indizes weg zu erklären, aber Volatilitäts-Clustering und Lang-Speicher-Effekte bestehen. Es ist endlich Zeit, unsere Aufmerksamkeit auf die Kombination dieser beiden Modelle, nämlich der Autoregressive Moving Average der Ordnung p, q, ARMA (p, q) zu lenken, um zu sehen, ob es die Situation weiter verbessern wird. Allerdings müssen wir warten, bis der nächste Artikel für eine vollständige Diskussion Klicken Sie unten, um mehr darüber zu erfahren. Die Informationen auf dieser Website ist die Meinung der einzelnen Autoren auf der Grundlage ihrer persönlichen Beobachtung, Forschung und jahrelange Erfahrung. Der Herausgeber und seine Autoren sind nicht registrierte Anlageberater, Rechtsanwälte, CPAs oder andere Finanzdienstleister und machen keine Rechts-, Steuer-, Rechnungswesen, Anlageberatung oder andere professionelle Dienstleistungen. Die Informationen, die von dieser Web site angeboten werden, sind nur allgemeine Ausbildung. Weil jeder Einzelne sachliche Situation anders ist, sollte der Leser seinen persönlichen Berater suchen. Weder der Autor noch der Herausgeber übernehmen jegliche Haftung oder Verantwortung für Fehler oder Unterlassungen und haben weder eine Haftung noch Verantwortung gegenüber Personen oder Körperschaften in Bezug auf Schäden, die direkt oder indirekt durch die auf dieser Website enthaltenen Informationen verursacht oder vermutet werden. Benutzung auf eigene Gefahr. Darüber hinaus kann diese Website erhalten finanzielle Entschädigung von den Unternehmen erwähnt durch Werbung, Affiliate-Programme oder auf andere Weise. Preise und Angebote von Inserenten auf dieser Website ändern sich häufig, manchmal ohne Vorankündigung. Während wir uns bemühen, rechtzeitige und genaue Informationen aufrechtzuerhalten, können Angebot Details veraltet sein. Besucher sollten daher die Bedingungen dieser Angebote vor der Teilnahme an ihnen überprüfen. Der Autor und sein Herausgeber haften nicht für die Aktualisierung der Informationen und haften nicht für die Inhalte, Produkte und Dienstleistungen von Drittanbietern, auch wenn sie über Hyperlinks und Anzeigen auf dieser Website aufgerufen werden. Autoregressive gleitende durchschnittliche Fehlerprozesse (ARMA-Fehler) und andere Modelle mit Verzögerungen Der Fehlerterme können durch Verwendung von FIT-Anweisungen geschätzt und simuliert oder prognostiziert werden, indem SOLVE-Anweisungen verwendet werden. ARMA-Modelle für den Fehlerprozess werden oft für Modelle mit autokorrelierten Residuen verwendet. Mit dem AR-Makro können Modelle mit autoregressiven Fehlerprozessen spezifiziert werden. Mit dem MA-Makro können Modelle mit gleitenden Durchschnittsfehlern angegeben werden. Autoregressive Fehler Ein Modell mit autoregressiven Fehler erster Ordnung, AR (1), hat die Form, während ein AR (2) Fehlerprozess die Form hat und so weiter für Prozesse höherer Ordnung. Beachten Sie, dass die s unabhängig und identisch verteilt sind und einen Erwartungswert von 0 haben. Ein Beispiel für ein Modell mit einer AR (2) - Komponente ist usw. für Prozesse höherer Ordnung. Zum Beispiel können Sie ein einfaches lineares Regressionsmodell mit MA (2) gleitenden Durchschnittsfehlern schreiben, da MA1 und MA2 die gleitenden Mittelwerte sind. Beachten Sie, dass RESID. Y automatisch durch PROC MODEL definiert wird. Die ZLAG-Funktion muss für MA-Modelle verwendet werden, um die Rekursion der Verzögerungen zu verkürzen. Dadurch wird sichergestellt, dass die verzögerten Fehler in der Lag-Priming-Phase bei Null beginnen und fehlende Werte nicht ausbreiten, wenn Lag-Priming-Periodenvariablen fehlen und stellt sicher, dass die zukünftigen Fehler null sind, anstatt während Simulation oder Prognose fehlen. Einzelheiten zu den Verzögerungsfunktionen finden Sie im Abschnitt Lag Logic. Dieses mit dem MA-Makro geschriebene Modell lautet wie folgt: Allgemeine Form für ARMA-Modelle Das allgemeine ARMA-Verfahren (p, q) hat die folgende Form Ein ARMA-Modell (p, q) kann wie folgt angegeben werden: wobei AR i und MA j repräsentieren Die autoregressiven und gleitenden Durchschnittsparameter für die verschiedenen Verzögerungen. Sie können beliebige Namen für diese Variablen verwenden, und es gibt viele äquivalente Möglichkeiten, die die Spezifikation geschrieben werden könnte. Vektor-ARMA-Prozesse können auch mit PROC MODEL geschätzt werden. Beispielsweise kann ein zweidimensionaler AR (1) - Prozeß für die Fehler der beiden endogenen Variablen Y1 und Y2 wie folgt spezifiziert werden: Konvergenzprobleme mit ARMA-Modellen ARMA-Modelle können schwer abzuschätzen sein. Wenn die Parameterschätzwerte nicht innerhalb des geeigneten Bereichs liegen, wachsen exponentiell gleitende Modellrestriktionen. Die berechneten Residuen für spätere Beobachtungen können sehr groß sein oder überlaufen. Dies kann entweder geschehen, weil falsche Startwerte verwendet wurden oder weil sich die Iterationen von vernünftigen Werten entfernt haben. Bei der Auswahl der Anfangswerte für ARMA-Parameter sollte Sorgfalt angewendet werden. Startwerte von 0,001 für ARMA-Parameter arbeiten normalerweise, wenn das Modell die Daten gut passt und das Problem gut konditioniert ist. Man beachte, dass ein MA-Modell oft durch ein höherwertiges AR-Modell angenähert werden kann und umgekehrt. Dies kann zu einer hohen Kollinearität bei gemischten ARMA-Modellen führen, was wiederum zu ernsthaften Konditionierungen in den Berechnungen und der Instabilität der Parameterschätzungen führen kann. Wenn Sie Konvergenzprobleme haben, während Sie ein Modell mit ARMA-Fehlerprozessen schätzen, versuchen Sie in Schritten abzuschätzen. Verwenden Sie zuerst eine FIT-Anweisung, um nur die strukturellen Parameter mit den auf Null gehaltenen ARMA-Parametern zu schätzen (oder zu vernünftigen vorherigen Schätzungen, falls verfügbar). Als nächstes verwenden Sie eine andere FIT-Anweisung, um die ARMA-Parameter nur unter Verwendung der strukturellen Parameterwerte aus dem ersten Lauf zu schätzen. Da die Werte der Strukturparameter wahrscheinlich nahe an ihren endgültigen Schätzwerten liegen, können die ARMA-Parameterschätzungen nun konvergieren. Verwenden Sie schließlich eine andere FIT-Anweisung, um simultane Schätzungen aller Parameter zu erzeugen. Da die Anfangswerte der Parameter nun sehr nahe an ihren endgültigen gemeinsamen Schätzungen liegen, sollten die Schätzungen schnell zusammenlaufen, wenn das Modell für die Daten geeignet ist. AR Anfangsbedingungen Die Anfangsverzögerungen der Fehlerterme von AR (p) - Modellen können auf unterschiedliche Weise modelliert werden. Die von SASETS-Prozeduren unterstützten Autoregressive-Fehler-Startup-Methoden sind die folgenden: Bedingte kleinste Fehlerquadrate (ARIMA - und MODEL-Prozeduren) Unbedingte Kleinstquadrate (AUTOREG, ARIMA und MODEL) Maximale Wahrscheinlichkeit (AUTOREG, ARIMA und MODEL) Yule-Walker (AUTOREG Hildreth-Lu, das die ersten p-Beobachtungen löscht (nur MODELL-Verfahren) Siehe Kapitel 8, Die AUTOREG-Prozedur, für eine Erklärung und Diskussion der Vorzüge verschiedener AR (p) - Startmethoden. Die CLS-, ULS-, ML - und HL-Initialisierungen können mit PROC MODEL durchgeführt werden. Für AR (1) Fehler können diese Initialisierungen wie in Tabelle 18.2 gezeigt erzeugt werden. Diese Verfahren sind in großen Proben äquivalent. Tabelle 18.2 Initialisierungen durchgeführt durch PROC MODELL: AR (1) ERRORS Die anfänglichen Verzögerungen der Fehlerausdrücke von MA (q) - Modellen können auch unterschiedlich modelliert werden. Die folgenden gleitenden durchschnittlichen Fehlerstartparadigmen werden von den ARIMA - und MODEL-Prozeduren unterstützt: unbedingte kleinste Fehlerquadrate bedingte kleinste Fehlerquadrate Die bedingte Methode der kleinsten Fehlerquadrate zur Schätzung der gleitenden durchschnittlichen Fehlerterme ist nicht optimal, da sie das Startproblem ignoriert. Dies verringert die Effizienz der Schätzungen, obwohl sie unverändert bleiben. Die anfänglichen verzögerten Residuen, die sich vor dem Start der Daten erstrecken, werden als 0 angenommen, ihr unbedingter Erwartungswert. Dies führt zu einer Differenz zwischen diesen Residuen und den verallgemeinerten Resten der kleinsten Quadrate für die gleitende durchschnittliche Kovarianz, die im Gegensatz zum autoregressiven Modell durch den Datensatz fortbesteht. Normalerweise konvergiert diese Differenz schnell auf 0, aber für fast nicht-invertierbare gleitende Durchschnittsprozesse ist die Konvergenz ziemlich langsam. Um dieses Problem zu minimieren, sollten Sie viele Daten haben, und die gleitenden Durchschnittsparameter-Schätzungen sollten gut innerhalb des invertiblen Bereichs liegen. Dieses Problem kann auf Kosten des Schreibens eines komplexeren Programms korrigiert werden. Unbedingte Kleinste-Quadrate-Schätzungen für das MA (1) - Prozeß können durch Spezifizieren des Modells wie folgt erzeugt werden: Gleitende Durchschnittsfehler können schwer abgeschätzt werden. Man sollte erwägen, eine AR (p) - Näherung für den gleitenden Durchschnitt zu verwenden. Ein gleitender Durchschnitt kann in der Regel durch einen autoregressiven Prozess gut approximiert werden, wenn die Daten nicht geglättet oder differenziert sind. Das AR-Makro Das SAS-Makro AR erzeugt Programmieranweisungen für PROC MODEL für autoregressive Modelle. Das AR-Makro ist Teil der SASETS-Software, und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Das autoregressive Verfahren kann auf die strukturellen Gleichungsfehler oder auf die endogenen Reihen selbst angewendet werden. Das AR-Makro kann für folgende Arten von Autoregression verwendet werden: uneingeschränkte Vektorautoregression beschränkte Vektorautoregression Univariate Autoregression Um den Fehlerausdruck einer Gleichung als autoregressiven Prozess zu modellieren, verwenden Sie die folgende Anweisung nach der Gleichung: Angenommen, Y ist eine Linearen Funktion von X1, X2 und einem AR (2) Fehler. Sie würden dieses Modell wie folgt schreiben: Die Aufrufe zu AR müssen nach allen Gleichungen kommen, auf die sich der Prozess bezieht. Der vorhergehende Makroaufruf AR (y, 2) erzeugt die in der LIST-Ausgabe in Abbildung 18.58 gezeigten Anweisungen. Abbildung 18.58 LIST Optionsausgabe für ein AR (2) - Modell Die PRED-Präfixvariablen sind temporäre Programmvariablen, die verwendet werden, so dass die Verzögerungen der Residuen die korrekten Residuen sind und nicht die, die durch diese Gleichung neu definiert werden. Beachten Sie, dass dies den Aussagen entspricht, die explizit im Abschnitt Allgemeine Formulare für ARMA-Modelle beschrieben sind. Sie können die autoregressiven Parameter auch bei ausgewählten Verzögerungen auf Null setzen. Wenn Sie zum Beispiel autoregressive Parameter in den Lags 1, 12 und 13 wünschen, können Sie die folgenden Anweisungen verwenden: Diese Anweisungen erzeugen die in Abbildung 18.59 dargestellte Ausgabe. Abbildung 18.59 LIST-Option Ausgang für ein AR-Modell mit Lags bei 1, 12 und 13 Die MODEL-Prozedurauflistung der kompilierten Programmcode-Anweisung als Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Es gibt Variationen der Methode der bedingten Kleinste-Quadrate, je nachdem, ob Beobachtungen am Anfang der Serie zum Aufwärmen des AR-Prozesses verwendet werden. Die AR-bedingte Methode der kleinsten Quadrate verwendet standardmäßig alle Beobachtungen und nimmt Nullen für die Anfangsverzögerungen autoregressiver Terme an. Wenn Sie die M-Option verwenden, können Sie anfordern, dass AR die unbedingte Methode der kleinsten Fehlerquadrate (ULS) oder Maximum-Likelihood (ML) anwendet. Zum Beispiel, Diskussionen dieser Methoden wird im Abschnitt AR Anfangsbedingungen zur Verfügung gestellt. Unter Verwendung der Option MCLS n können Sie anfordern, dass die ersten n Beobachtungen verwendet werden, um Schätzungen der anfänglichen autoregressiven Verzögerungen zu berechnen. In diesem Fall beginnt die Analyse mit der Beobachtung n 1. Beispielsweise können Sie mit dem AR-Makro ein autoregressives Modell an die endogene Variable anstelle des Fehlerterms über die Option TYPEV anwenden. Wenn Sie beispielsweise die fünf letzten Lags von Y der Gleichung im vorherigen Beispiel hinzufügen möchten, können Sie AR verwenden, um die Parameter und die Lags mit den folgenden Anweisungen zu generieren: Die obigen Anweisungen erzeugen die in Abbildung 18.60 dargestellte Ausgabe. Abbildung 18.60 LIST Option Ausgang für ein AR-Modell von Y Dieses Modell prognostiziert Y als lineare Kombination von X1, X2, einem Intercept und den Werten von Y in den letzten fünf Perioden. Unrestricted Vector Autoregression Um die Fehlerausdrücke eines Gleichungssystems als vektorautoregressiven Prozess zu modellieren, verwenden Sie die folgende Form des AR-Makros nach den Gleichungen: Der Name des Prozessnamens ist ein beliebiger Name, den Sie für AR verwenden, um Namen für den autoregressiven Namen zu verwenden Werden. Mit dem AR-Makro können Sie verschiedene AR-Prozesse für verschiedene Sätze von Gleichungen modellieren, indem Sie für jeden Satz unterschiedliche Prozessnamen verwenden. Der Prozessname stellt sicher, dass die verwendeten Variablennamen eindeutig sind. Verwenden Sie für den Prozess einen kurzen Prozessname-Wert, wenn Parameter-Schätzwerte in einen Ausgabedatensatz geschrieben werden sollen. Das AR-Makro versucht, Parameternamen zu erstellen, die kleiner oder gleich acht Zeichen sind, aber diese wird durch die Länge des Prozessnamens begrenzt. Die als Präfix für die AR-Parameternamen verwendet wird. Der Variablenlistenwert ist die Liste der endogenen Variablen für die Gleichungen. Beispielsweise wird angenommen, dass Fehler für die Gleichungen Y1, Y2 und Y3 durch einen autoregressiven Prozess der zweiten Ordnung erzeugt werden. Sie können die folgenden Aussagen verwenden, die für Y1 und ähnlichen Code für Y2 und Y3 erzeugen: Für Vektorprozesse kann nur die Methode der bedingten kleinsten Quadrate (MCLS oder MCLS n) verwendet werden. Sie können auch das gleiche Formular mit Einschränkungen verwenden, dass die Koeffizientenmatrix bei ausgewählten Verzögerungen 0 ist. Zum Beispiel verwenden die folgenden Aussagen einen Vektorprozess der dritten Ordnung auf die Gleichungsfehler, wobei alle Koeffizienten bei Verzögerung 2 auf 0 beschränkt sind und die Koeffizienten bei den Verzögerungen 1 und 3 unbeschränkt sind: Sie können die drei Reihen Y1Y3 als vektorautoregressiven Prozess modellieren In den Variablen statt in den Fehlern, indem Sie die Option TYPEV verwenden. Wenn Sie Y1Y3 als Funktion von vergangenen Werten von Y1Y3 und einigen exogenen Variablen oder Konstanten modellieren möchten, können Sie mit AR die Anweisungen für die Lag-Terme erzeugen. Schreiben Sie eine Gleichung für jede Variable für den nichtautoregressiven Teil des Modells und rufen Sie dann AR mit der Option TYPEV auf. Zum Beispiel kann der nichtautoregressive Teil des Modells eine Funktion von exogenen Variablen sein, oder es können Abfangparameter sein. Wenn es keine exogenen Komponenten für das Vektorautoregressionsmodell gibt, die keine Abschnitte enthalten, dann weisen Sie jeder der Variablen Null zu. Es muss eine Zuordnung zu jeder der Variablen vorhanden sein, bevor AR aufgerufen wird. Dieses Beispiel modelliert den Vektor Y (Y1 Y2 Y3) als eine lineare Funktion nur seines Werts in den vorherigen zwei Perioden und einen Weißrauschenfehlervektor. Das Modell hat 18 (3 3 3 3) Parameter. Syntax des AR-Makros Es gibt zwei Fälle der Syntax des AR-Makros. Wenn Einschränkungen für einen Vektor-AR-Prozess nicht benötigt werden, hat die Syntax des AR-Makros die allgemeine Form, die ein Präfix für AR spezifiziert, das beim Konstruieren von Namen von Variablen zum Definieren des AR-Prozesses verwendet werden soll. Wenn der Endolist nicht angegeben wird, ist die endogene Liste standardmäßig der Name. Der der Name der Gleichung sein muss, auf die der AR-Fehlerprozess angewendet werden soll. Der Name darf nicht länger als 32 Zeichen sein. Ist die Reihenfolge des AR-Prozesses. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Wenn mehr als ein Name gegeben wird, wird ein unbeschränkter Vektorprozess mit den strukturellen Residuen aller Gleichungen erzeugt, die als Regressoren in jeder der Gleichungen enthalten sind. Wenn nicht angegeben, verwendet endolist standardmäßig den Namen. Gibt die Liste der Verzögerungen an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Lags müssen kleiner oder gleich nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, wird die Verzögerungsliste standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. Gibt die zu implementierende Schätzmethode an. Gültige Werte von M sind CLS (bedingte Schätzungen der kleinsten Quadrate), ULS (unbedingte Schätzungen der kleinsten Quadrate) und ML (Maximum Likelihood Estimates). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung angegeben wird. Die ULS - und ML-Methoden werden für AR-AR-Modelle von AR nicht unterstützt. Dass das AR-Verfahren auf die endogenen Variablen anstelle der strukturellen Residuen der Gleichungen angewendet werden soll. Eingeschränkte Vektorautoregression Sie können steuern, welche Parameter in den Prozess eingeschlossen werden, wobei die Parameter auf 0 begrenzt werden, die Sie nicht einschließen. Verwenden Sie zuerst AR mit der Option DEFER, um die Variablenliste zu deklarieren und die Dimension des Prozesses zu definieren. Verwenden Sie dann zusätzliche AR-Aufrufe, um Ausdrücke für ausgewählte Gleichungen mit ausgewählten Variablen an ausgewählten Verzögerungen zu generieren. Zum Beispiel sind die erzeugten Fehlergleichungen wie folgt: Dieses Modell besagt, daß die Fehler für Y1 von den Fehlern sowohl von Y1 als auch von Y2 (aber nicht von Y3) bei beiden Verzögerungen 1 und 2 abhängen und daß die Fehler für Y2 und Y3 davon abhängen Die vorherigen Fehler für alle drei Variablen, aber nur bei Verzögerung 1. AR-Makro-Syntax für eingeschränkten Vektor-AR Eine alternative Verwendung von AR kann Einschränkungen für einen Vektor-AR-Prozess durch Aufruf von AR mehrmals aufrufen, um verschiedene AR-Terme und - Lags für verschiedene anzugeben Gleichungen. Der erste Aufruf hat die allgemeine Form spezifiziert ein Präfix für AR zu verwenden, bei der Konstruktion von Namen von Variablen benötigt, um den Vektor AR-Prozess zu definieren. Gibt die Reihenfolge des AR-Prozesses an. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Gibt an, dass AR den AR-Prozess nicht generieren soll, sondern auf weitere Informationen warten soll, die in späteren AR-Aufrufen für denselben Namenwert angegeben sind. Die nachfolgenden Anrufe haben die allgemeine Form ist die gleiche wie im ersten Aufruf. Spezifiziert die Liste der Gleichungen, auf die die Spezifikationen in diesem AR-Aufruf angewendet werden sollen. Nur Namen, die im Endolistenwert des ersten Aufrufs für den Namenswert angegeben sind, können in der Liste der Gleichungen in eqlist erscheinen. Spezifiziert die Liste der Gleichungen, deren verzögerte strukturelle Residuen als Regressoren in die Gleichungen in eqlist aufgenommen werden sollen. Nur Namen im Endolisten des ersten Aufrufs für den Namenswert können in varlist erscheinen. Wenn nicht angegeben, wird varlist standardmäßig Endolist. Gibt die Liste der Verzögerungen an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Verzögerungen müssen kleiner oder gleich dem Wert von nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, verwendet laglist standardmäßig alle Verzögerungen 1 bis nlag. Das MA-Makro Das SAS-Makro MA generiert Programmieranweisungen für PROC MODEL für gleitende Durchschnittsmodelle. Das Makro MA ist Teil der SASETS-Software, und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Der gleitende Mittelwertfehlerprozeß kann auf die strukturellen Gleichungsfehler angewendet werden. Die Syntax des MA-Makros entspricht dem AR-Makro, außer es gibt kein TYPE-Argument. Wenn Sie die kombinierten MA - und AR-Makros verwenden, muss das Makro MA dem AR-Makro folgen. Die folgenden SASIML-Anweisungen erzeugen einen ARMA-Fehlerprozess (1, (1 3)) und speichern ihn im Datensatz MADAT2. Die folgenden PROC MODEL-Anweisungen werden verwendet, um die Parameter dieses Modells unter Verwendung der maximalen Wahrscheinlichkeitsfehlerstruktur zu schätzen: Die Schätzungen der durch diesen Durchlauf erzeugten Parameter sind in Abbildung 18.61 dargestellt. Abbildung 18.61 Schätzungen aus einem ARMA-Prozess (1, (1 3)) Es gibt zwei Fälle der Syntax für das MA-Makro. Wenn Beschränkungen für einen Vektor-MA-Prozess nicht erforderlich sind, hat die Syntax des MA-Makros die allgemeine Form, die ein Präfix für MA vorgibt, das beim Konstruieren von Namen von Variablen verwendet wird, die benötigt werden, um den MA-Prozess zu definieren, und ist der Standard-Endolist. Ist die Reihenfolge des MA-Prozesses. Spezifiziert die Gleichungen, auf die das MA-Verfahren angewendet werden soll. Wenn mehr als ein Name angegeben wird, wird die CLS-Schätzung für den Vektorprozess verwendet. specifies the lags at which the MA terms are to be added. All of the listed lags must be less than or equal to nlag . and there must be no duplicates. If not specified, the laglist defaults to all lags 1 through nlag . specifies the estimation method to implement. Valid values of M are CLS (conditional least squares estimates), ULS (unconditional least squares estimates), and ML (maximum likelihood estimates). MCLS is the default. Only MCLS is allowed when more than one equation is specified in the endolist . MA Macro Syntax for Restricted Vector Moving-Average An alternative use of MA is allowed to impose restrictions on a vector MA process by calling MA several times to specify different MA terms and lags for different equations. The first call has the general form specifies a prefix for MA to use in constructing names of variables needed to define the vector MA process. specifies the order of the MA process. specifies the list of equations to which the MA process is to be applied. specifies that MA is not to generate the MA process but is to wait for further information specified in later MA calls for the same name value. The subsequent calls have the general form is the same as in the first call. specifies the list of equations to which the specifications in this MA call are to be applied. specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist . specifies the list of lags at which the MA terms are to be added.

No comments:

Post a Comment